9 research outputs found

    Sequence and expression analysis of rainbow trout CXCR2, CXCR3a and CXCR3b aids interpretation of lineage-specific conversion, loss and expansion of these receptors during vertebrate evolution

    Get PDF
    Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved. Open Access funded by Biotechnology and Biological Sciences Research Council This work received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. Q.X. and Y.J. were supported financially by the National Scholarship Council of China, J.W.H by the Biotechnology and Biological Sciences Research Council (BB/K009125/1), and M.M.M. by European Commision LIFECYCLE project (222919).Peer reviewedPublisher PD

    Characterisation of the TNF superfamily members CD40L and BAFF in the small-spotted catshark (Scyliorhinus canicula)

    Get PDF
    The tumour necrosis factor superfamily (TNFSF) members CD40L and BAFF play critical roles in mammalian B cell survival, proliferation and maturation, however little is known about these key cytokines in the oldest jawed vertebrates, the cartilaginous fishes. Here we report the cloning of CD40L and BAFF orthologues (designated ScCD40L and ScBAFF) in the small-spotted catshark (Scyliorhinus canicula). As predicted both proteins are type II membrane-bound proteins with a TNF homology domain in their extracellular region and both are highly expressed in shark immune tissues. ScCD40L transcript levels correlate with those of TCRα and transcription of both genes is modulated in peripheral blood leukocytes following in vitro stimulation. Although a putative CD40L orthologue was identified in the elephant shark genome the work herein is the first molecular characterisation and transcriptional analysis of CD40L in a cartilaginous fish. ScBAFF was also cloned and its transcription characterised in an attempt to resolve the discrepancies observed between spiny dogfish BAFF and bamboo shark BAFF in previously published studies

    Characterisation and expression analysis of B-cell activating factor (BAFF) in spiny dogfish (Squalus acanthias): Cartilaginous fish BAFF has a unique extra exon that may impact receptor binding

    Get PDF
    B-cell activating factor (BAFF), also known as tumour necrosis factor (TNF) ligand superfamily member 13B, is an important immune regulator with critical roles in B-cell survival, proliferation, differentiation and immunoglobulin secretion. A BAFF gene has been cloned from spiny dogfish (Squalus acanthias) and its expression studied. The dogfish BAFF encodes for an anchored type-II transmembrane protein of 288 aa with a putative furin protease cleavage site and TNF family signature as seen in BAFFs from other species. The identity of dogfish BAFF has also been confirmed by conserved cysteine residues, and phylogenetic tree analysis. The dogfish BAFF gene has an extra exon not seen in teleost fish, birds and mammals that encodes for 29 aa and may impact on receptor binding. The dogfish BAFF is highly expressed in immune tissues, such as spleen, and is up-regulated by PWM in peripheral blood leucocytes, suggesting a potentially important role in the immune system

    Identification of Immune Related LRR-Containing Genes in Maize (Zea mays L.) by Genome-Wide Sequence Analysis

    No full text
    A large number of immune receptors consist of nucleotide binding site-leucine rich repeat (NBS-LRR) proteins and leucine rich repeat-receptor-like kinases (LRR-RLK) that play a crucial role in plant disease resistance. Although many NBS-LRR genes have been previously identified in Zea mays, there are no reports on identifying NBS-LRR genes encoded in the N-terminal Toll/interleukin-1 receptor (TIR) motif and identifying genome-wide LRR-RLK genes. In the present study, 151 NBS-LRR genes and 226 LRR-RLK genes were identified after performing bioinformatics analysis of the entire maize genome. Of these identified genes, 64 NBS-LRR genes and four TIR-NBS-LRR genes were identified for the first time. The NBS-LRR genes are unevenly distributed on each chromosome with gene clusters located at the distal end of each chromosome, while LRR-RLK genes have a random chromosomal distribution with more paired genes. Additionally, six LRR-RLK/RLPs including FLS2, PSY1R, PSKR1, BIR1, SERK3, and Cf5 were characterized in Zea mays for the first time. Their predicted amino acid sequences have similar protein structures with their respective homologues in other plants, indicating that these maize LRR-RLK/RLPs have the same functions as their homologues act as immune receptors. The identified gene sequences would assist in the study of their functions in maize
    corecore